Chemistry 6011 (Fall 2016) Advanced Inorganic Chemistry I: From Atoms to Coordination Compounds Problem Set #3

Chapter 6-

1. Define the equations for the Latimer diagram of iron (Appendix B). Assume the conditions are acidic. Which steps are spontaneous?

Chapter 9 and 10-

1. Name the following compounds:

a. [Cu(NH₃)₄][PtBr₄]

b. [Co(en)₂Cl(NO₂)]Cl

c. Na₃[Al(C₂O₄)₃]

d. W(CO)₅PMe₃

- 2. Write structural formulas for the following:
- a. diamminetriaquahydroxochromium(III) nitrate
- b. tetrakis(pyridine)platinum(II) tetraphenylborate
- c. dibromotetracarbonyliron(II)

 $d.\ tetraammine cobalt (III)-\mu-amido-\mu-hydroxobis (ethylene diamine) cobalt (III)$

3. How might Werner have been able to distinguish between the following two formulations for a compound: $[Co(NH_3)_5]Cl_3$ and $[Co(NH_3)_5Cl]Cl_2$? The cation would be trigonal bipyramidal in the former and octahedral in the latter.

4. To show your understanding of basic bonding models, describe the bonding in $[NiF_4]^{2-}$ with each of the following:

a. Valence bond theory

b. Crystal field theory

c. Molecular orbital theory

5. What bond angle would you expect for M-O-R

a. if there is no metal-oxygen π bonding?

b. if the alkoxide donates two π electrons?

c. if the alkoxide donates four π electrons?

6. If one $[CuL_6]^{2+}$ solution is blue and another is green, which would be expected to have the higher value of Δ_0 ?

7. Write K and β expressions for the proton affinity of a tetraprotic ligand.

8. Write K and β expressions for the metal affinity of a tetraprotic ligand, which binds in a ratio of 1:1 metal:ligand.

9. A complex of nickel(II), $[NiCl_2(PPh_3)_2]$, is paramagnetic. The analogous complex of palladium(II) is diamagnetic. Predict the number of isomers that will exist for each of these formulations.

10. Determine the equilibrium constant for the following chemical reaction.

 $Ni(H_2O)_6^{2+}$ + 6 NH₃ \leftrightarrow $Ni(NH_3)_6^{2+}$ + 6 H₂O $\Delta G^\circ = -51.8 \text{ kJ/mol}$

Would you expect a major change in entropy?

11. Draw out all the isomers, geometric and optical, of the following: $[Co(en)_2Cl_2]^+$ and $[Co(en)_2(NH_3)Cl]^{2+}$

12. Draw the molecular structure of the following complexes:

- a. cis-dichlorotetracyanochromate(III)
- b. mer-triamminetrichlorocobalt(III)
- c. *trans*-dichlorobis(trimethylphosphine)palladium(II)
- d. *fac*-triaquatrinitrocobalt(III)

13. The macrocycle ligand enterobactin has an extremely high affinity for Fe(III) with a stability constant of 10^{52} (the largest known stability constant for Fe(III) with a naturally occurring substance).

Harris, W.R.; Carrano, C. J.; Cooper, S.R.; Soften, S. R.; Aydeef, A.E.; McArdle, J.V.; Raymond, K.N. *J. Am. Chem. Soc.* **1979**, *101*, 6097-6104.

a. Suggest a structure for the Fe(III) enterobactin complex that explains its high stability.

b. If the concentration of the Fe(III)-enterobactin complex within the microorganism is 10^{-7} mol/L, how many liters of bacteria would have to be searched to find a single free Fe(III) ion?